
reacTIVision and TUIO: A Tangible Tabletop Toolkit
Martin Kaltenbrunner

Universitat Pompeu Fabra
08018 Barcelona, Spain

martin.kaltenbrunner@upf.edu

ABSTRACT
This article presents the recent updates and an evaluation of
reacTIVision, a computer vision toolkit for fiducial marker
tracking and multi-touch interaction. It also discusses the
current and future development of the TUIO protocol and
framework, which has been primarily designed as an
abstraction layer for the description and transmission of
pointers and tangible object states in the context of
interactive tabletop surfaces. The initial protocol definition
proved to be rather robust due to the simple and
straightforward implementation approach, which also
supported its widespread adoption within the open source
community. This article also discusses the current
limitations of this simplistic approach and provides an
outlook towards a next generation protocol definition,
which will address the need for additional descriptors and
the protocol’s general extensibility.

Author Keywords
Human Computer Interaction, Tangible User Interfaces,
Interactive Surfaces, Computer Vision, Protocols.

ACM Classification Keywords
H.5.2. User Interfaces: Interaction styles, Input devices and
strategies, Theory and methods.

INTRODUCTION
The TUIO protocol and reacTIVision framework comprise
a toolkit for the rapid development of tabletop tangible user
interfaces and multi-touch surfaces. Both components have
been initially developed for musical applications in the
context of the reacTable [1] project, a tangible modular
synthesizer based on an interactive table surface. After the
presentation of this instrument and also Jeff Han’s multi-
touch demos based on FTIR [2] had created considerable
public interest in gesture-controlled surfaces, the TUIO
protocol was eventually adopted by several open source
initiatives with the goal to reverse engineer large multi-

touch surfaces. Access to such a variety of freely available
tools based on a shared protocol supported the
democratization of the emerging tangible and multi-touch
user interface technology. Since their initial publication and
release in 2005, TUIO [3] and the reacTIVision toolkit have
been successfully used for the design and implementation
of numerous research, commercial and hobbyist projects,
supporting the widespread adoption of the tangible
interaction paradigm.

TANGIBLE SURFACE ABSTRACTION
The initial goal of the TUIO protocol definition was to
provide a simple description of pointer and token states in
the context of a two dimensional table surface, where
pointers are defined as untagged points with normalized
Cartesian coordinates, while tangible tokens provide an
additional identification tag and rotation angle. Although
this is a very simplified view of an interactive surface
context, this description provides a basic solution for the
implementation of multi-touch surfaces and the tracking of
tagged physical objects. Such a basic model has of course
its limitations, which became even more evident with its
adoption within other application areas as well as with the
further development of the reacTIVision engine itself. We
will discuss these limitations and the consequent future
extensions to this model further below.
After evaluating existing alternatives for the controller
context [4], the TUIO protocol was based on Open Sound
Control (OSC) [5], which has been widely adopted for the
encoding of control data from musical instruments and
general-purpose interactive devices. OSC successfully
intends to overcome the performance limitations of the
musical standard MIDI protocol, specifically regarding its
bandwidth and data resolution, hence allowing for a more
fine-grained control of advanced musical instrument
designs. On the other hand the open approach of OSC
compared to MIDI, makes it more difficult to interconnect
arbitrary controller systems, therefore OSC based protocols
such as TUIO need to define a clear semantics of the
specific usage scenario within a separate message name
space. TUIO in this case defines a range of profiles for the
description of token and pointer state changes. Although
OSC itself does not specify a default transport layer, most
implementations including TUIO, are currently based on
the delivery of UDP packets, which allow the necessary low
latency delivery over commonly available local, wired or
wireless IP networking infrastructure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ITS '09, November 23-25 2009, Banff, Alberta, Canada
Copyright © 2009 978-1-60558-733-2/09/11... $10.00

T

The initial application scenario for the TUIO protocol was
defined by the interchange of control data between two or
more table interfaces, which had been constructed for the
first series of reacTable concerts, where four players were
performing on two instruments located in different cities.
Therefore the protocol design needed to be fast and robust
enough for a musical performance over a standard Internet
connection. Since the transmission of natural events - such
as adding, moving and removing objects – could cause
inconsistencies when certain events, most importantly the
remove messages, are lost during transport, the protocol
structure was specifically designed to stay consistent even
when used on a fast but error prone UDP channel. Hence
TUIO implements a state model instead of transmitting
events, all currently active token and pointer identifiers are
transmitted within each message bundle, which allows the
continuous reconstruction of add and remove events on the
receiving side by comparing the local and received
identifiers.
The specification of such a descriptive network based
protocol suggests the design of a distributed architecture,
separating the tracking sensor component from the actual
user application. This distributed approach enables the
interoperability of various sensor technologies, platforms
and programming environments. Apart from earlier
considerations regarding the limited processing power of a
single CPU system, which nowadays have become less
important with the advent of powerful multi-core
processors, another motivation for choosing this
architecture was the use of the framework for teaching
purposes. Dealing with students from different backgrounds
and with varying technical skills, ranging from engineers to
artists, providing a collection of TUIO client
implementations for programming languages such as C++.
Java and C# and more importantly multimedia authoring
tools such as Processing, Pure Data, Max/MSP, Quartz
Composer and Flash, allowed the involved students to
concentrate on the actual interface design task using the
most appropriate tool.

THE REACTIVISION ENGINE
Since its last open source software release1 and the previous
publication of its general functionality [6], the reacTIVision
engine has undergone major feature and performance
improvements. In addition to the significant improvement
of the overall symbol tracking robustness, the recently
published public version 1.4 also supports basic multi-touch
finger tracking. While the initial versions of reacTIVision
only performed the direct tracking of amoeba style fiducial
symbols, which have been specifically developed in
conjunction with the fiducial tracking core libfidtrack, the
latest release introduces various tracking layers, which
significantly enhance the symbol tracking performance.
This is especially important in conditions with fast moving
objects due to expressive gestures in musical performance.

1 http://reactivision.sourceforge.net/

Fiducial Tracking
The principal fiducial tracking method used within
reacTIVision is based on the analysis of region adjacency
graphs, originally derived from Costanza’s d-touch concept
[7]. After applying a local adaptive threshold to the original
camera image, the resulting binary image is then segmented
into a graph of adjacent black and white regions. Hence the
identification of the amoeba symbols is based on a
dictionary search of previously defined tree structures that
are encoded into the marker topology, and the actual
symbol layout carries additional information, which allows
the precise calculation of the symbol centre point and its
rotation angle [8].

Figure 1: a) fiducial tree and two possible representations,

b) encoded center point and angle information

Since the symbol structure allows an almost arbitrary
representation of the actual geometry, we used a genetic
algorithm [9] for the automatic generation of optimally
shaped fiducial symbols, which eventually resulted in the
organic amoeba appearance of the presently used fiducial
marker collection. This genetic algorithm is driven by a
fitness function that selects the generated symbols based on
their size, symmetry and position and angle precision. The
symbol position is calculated from the average of all leaf
nodes, while the orientation vector points from the center
point to the average of all black leaf nodes only. The
current default set is for example defined by 18 nodes
within a tree with maximum depth of two layers, which
results in a possible range of 128 sequences, from which
only 108 symbols have been selected to meet the minimum
size and precision requirements.
The limitation to dedicated tree spaces, with a clearly
defined node count and tree depth ensures the overall
tracking robustness, since it is rather improbable to find
these complex tree structures within arbitrary image noise,
which limits the probability of finding false positives. We
also separate the currently used alternative symbol
collections by at least three nodes in order to avoid wrong
symbol identification due to erroneous image data.
On the other hand this strict analysis is prone to minor
changes of the symbol structure, such as addition and loss
of individual leaf nodes, which can often appear in noisy or
blurred images. While in these cases the algorithm is still
capable of identifying the presence of a fiducial symbol in
general, the identification of the individual symbol has
become impossible, since the actual tree structure has been
broken. Nevertheless we use the presence of unknown
fiducial symbols within a secondary fuzzy fiducial tracking
layer, where we simply assign unidentified erroneous
symbol structures to the ones previously tracked nearby,
which helps to improve the total symbol recognition rate.

Fast expressive movements, which are very common within
musical performance, unveil the limitations of optical
tracking methods. Problems such as motion blur can only
be partially resolved with shorter camera exposure times
and stronger illumination. Since these parameters are
limited, very fast object movements yield a blurry fiducial
image and hence result in a complete destruction of the
fiducial structure, making it impossible for both the
standard and fuzzy tracking method to identify an actual
symbol. Therefore a third layer is tracking the position of
the root node region, the usually white fiducial background.
With the knowledge of the previous fiducial position and
the displacement of the region centre from the actual
symbol centre, the position of fast moving fiducial markers
can be updated very accurately using just the root node
tracking method. To summarize, the trajectory of fast
moving objects, can be tracked accurately with a
combination of the three methods outlined above, where the
symbol can be tracked in all individual frames without
additional filtering methods. Currently we are allowing a
single frame without tracking result, which we are using to
calculate the correct speed and acceleration updates before
the object is finally removed from the list if not found in the
following frame. Since the actual position during this single
frame is not updated, we are planning to introduce an
additional Kalman filter [10] in order to estimate the
position of the lost symbol, which then also can be
reassigned more easily to a nearby root region.

Figure 2: The three tracking modes a) full b) fuzzy and c) root

region, depending on the retrieved symbol quality

Finger Tracking
The complementary multi-touch tracking layer introduced
with the latest reacTIVision release takes advantage of the
existing image processing infrastructure, without
introducing a significant CPU overhead for this additional
task. We are simply retrieving all white region candidates
with a given size from the available image segmentation
data and calculating the error comparing the candidate
region to a round region prototype. The average finger size
and maximum error can be adjusted within the application,
yielding good tracking results in well-adjusted conditions.
Compared to sole multi-touch trackers, reacTIVision is
required to maintain the full fiducial structure intact, and
therefore cannot afford the application of destructive image
filters such as Gaussian blur in order to smooth the finger
blob contour. Since this approach does not introduce any
additional or parallel image filtering in order to enhance the
source image, the initial configuration task of the camera

settings and illumination environment has to be done more
carefully than with comparable multi-touch only solutions.
On the other hand this combined method ensures a low
latency performance for musical applications, while
providing simultaneous fiducial and finger tracking within
the same image processing thread. The currently used tiled
local adaptive threshold [11] method yields good results,
and further improves the performance by neglecting tiles
with a gradient below a configurable value. Unfortunately
this method introduces square artifacts around low contrast
regions, which can degrade the finger tracking accuracy. In
order to improve the initial image quality we are currently
evaluating alternative local adaptive threshold algorithms
though, which should equally meet the requirements of the
marker and blob tracking tasks.

Figure 3: Original camera image and binary threshold image

with finger and fiducial tracking feedback.

Blob Tracking
With the following release, we introduce an additional
generic blob tracking layer, which is also taking advantage
of the existing computational infrastructure, by selecting
white regions within a given, configurable size range from
the available segmentation data structures, while previously
detected finger and fiducial root regions are excluded. In
order to avoid additional image processing tasks, these
regions are already encoded into a linked list of line spans
during the segmentation process, which also annotates the
final pixel area of each region. This data representation
allows the reconstruction of the region contour and area
without additional analysis of the actual source image itself,
which again avoids additional processing overhead for this
complementary tracking task. The span list implicitly
encodes the full blob contour information in a compact
format for further processing. The derived list of contour
points can be efficiently reduced to the outer (and inner)
blob contour, and consequently to a simplified list of
contour points, which describes the overall blob geometry
in sufficient detail. Finally for each of these retrieved
regions, the oriented bounding box is calculated, which is
providing an approximate description of its position, size
and orientation. Current reacTIVision development builds
already implement these basic geometry descriptors for
untagged objects, which as a consequence have been also
included within a third additional blob profile in an updated
revision of the TUIO protocol, which we will describe in
more detail below. The additional and more detailed
geometry descriptors will be included in a future TUIO 2.0
specification though.

Amoeba Symbols
In addition to the updates to the core tracking software
described above, some significant improvements to the
fiducial symbol layout and rendering have been
implemented, which enhance the overall tracking
performance in boundary conditions such as low camera
resolutions, reduced symbol sizes or increased surface
distance, all of which result in a smaller size of the symbol
in the actual camera image.
The number of symbols provided with the default set has
been increased from the original 90 amoeba symbols to a
total of 108 usable symbols out of the possible range of 128
within the described tree space. An improved fiducial
generation algorithm, which introduces - already during the
generation process - the final selection rules based on the
symbol size and orientation vector length, yielded 20%
more usable symbols that met the imposed criteria. By
applying a high penalty to symbols that did not meet the
initial size and vector boundaries, the genetic algorithm also
converged much faster towards a usable symbol, thus
reducing the overall generation time.
The newly created symbol set had its minimum orientation
vector length improved by almost 5%, which generally
supports the more robust calculation of the symbols’
rotation angle. Also the maximum symbol size has been
reduced by more than 10%, while as well showing a more
uniform and narrow size distribution.

Figure 4a: Distribution of the orientation vector length

Figure 4b: Distribution of the symbol footprint size

We also introduced an alternative set of smaller symbols
from a different tree space with 12 nodes only. While this
tree space contains 15 possible variations, we selected 12
symbols that met the size and vector length criteria. This
additional set can be used for applications that only require
a limited set of different symbols IDs, but has the advantage
of a reduced maximum symbol size by another 10%
compared to the default amoeba set. In general,
reacTIVision allows the usage of any arbitrary set of tree
sequences, although we currently only provide these two
subsets for the moment. Additional symbol collections can
be added with a simple configuration file, but we
recommend separating the selected tree spaces by at least
three tree nodes, in order to avoid wrong symbol
identifications. It should be also considered, that smaller
symbol sets will not provide sufficiently precise position
and rotation information, while these simpler tree
configurations are also more likely to be found in arbitrary
noise, and are therefore prone to yield false positives
compared to the carefully selected standard symbols.
Alternatively there are already third party fiducial
generators available, which allow the generation of
alternative symbols of any desired tree size.

Figure 5: comparing the original symbol rendering (top row)

to the improved rendering method (bottom row)

An improved graphical rendering method for the amoeba
symbols introduces relatively enlarged leaf node
proportions, which also support a better tracking
performance of small scale or distant markers. Finally this
new symbol set has been released in a vector based PDF
format, which allows a high quality printing of the marker
collection in any arbitrary size.
In order to increase the number of available marker IDs, the
collection of 108 plus 12 standard symbols has been
doubled though the addition of the inverted symbols with
an initial black root node, resulting in a total number of 216
plus 24 standard symbols that are delivered with the current
public release. This total of 240 distinguishable default
markers should be sufficient for most application cases,
considering that the individual marker IDs can also be
repeated within the same context.

Performance Evaluation
The combination of the three marker tracking methods yield
a satisfactory tracking performance even with fast moving
objects, provided the camera and illumination settings are
optimally configured with an appropriate short exposure
time, which also guarantees a low latency image
acquisition. The following chart illustrates the
improvements in these boundary conditions, where the
symbol structure is partially destroyed due to motion blur
caused by expressive object handling as shown above.

Figure 6: Tracking modes at varying speeds.

An evaluation of the tracking accuracy of resting symbols
showed a standard deviation of around 0.05 pixels for the
symbol centre point and a standard deviation of around 0.5
degrees for the rotation angle. These results allow for single
pixel position accuracy and a rotation angle accuracy of
three degrees in normal conditions, without significant jitter
problems. We expect to improve the tracking accuracy for
the rotation angle with the introduction of an additional
Kalman filter component.
Performance measures of the latency of the current image
processing chain depend on various factors, such as the
camera resolution and resulting buffer size, the platform,
compiler and CPU speed of the test system. Evaluating the
frame latency on a 2GHz Core Duo Macbook on Linux, the
median processing, analysis and delivery time for a VGA
sized frame ranges around 5ms, which results in an
acceptable system latency considering the complexity of the
task. The following table illustrates the evolution of the
processing latency for fiducial tracking adding the
additional finger and blob tracking layers.

 ICC 11.0 GCC 4.4
Fiducial tracking 4.8 ms 5.6 ms
Fiducial & touch tracking 5.0 ms 6.0 ms
Fiducial & touch & contour 5.4 ms 6.5 ms

A more detailed analysis and review of the tracking
performance for various conditions such as fiducial size,
and comparison with other marker systems would
unfortunately exceed the limits of this article and will be
therefore addressed in a subsequent publication.

THE TUIO PROTOCOL
The original TUIO protocol specification was concentrating
on the specific needs of the reacTable project, mainly
focusing on tagged object and finger tracking in the context
of a remote collaboration scenario, while ensuring the
overall robustness of the networked distributed system.
During the development and feature enhancements of our
own tracking application, as well as with the integration of
the TUIO protocol into further projects, several issues
regarding missing features within the present profiles and
the need for additional protocol extensions emerged. The
extension of the existing message structure needs to be
planned carefully though, considering the stability of all
current implementations that rely on solid shared protocol
definition.

Original TUIO Specification
A TUIO profile defines two central messages: set messages
and alive messages. Set messages are used to communicate
information about a token's state such as position,
orientation, velocity and acceleration. Alive messages
indicate the current set of tokens present on the surface
using a list of unique session IDs. Additional fseq messages
are defined to tag each frame update with a unique
sequence ID. At typical TUIO bundle is therefore typically
comprised of at least three messages, while the set
messages can be accumulated in order to fully use the
available space of a UDP packet. TUIO messages are
commonly delivered to UDP port 3333 in the default
configuration, although alternative transport methods are
equally allowed. Please note that the following clear text
message representations are only for demonstration
purposes, the actual OSC message is transmitted in a
compact binary format.

/tuio/[profile] alive [active session_IDs]

/tuio/[profile] set [session_ID attributes]

/tuio/[profile] fseq [int32]

There are two basic profiles for the description of
pointers and tokens (here cursors and objects), which are
commonly used within the context of a 2D surface. There
exist additional profiles for 2.5D environments, which
include the distance to the surface, as well as 3D
environments, which also provide 3D rotation information
for the object profiles. All profile types are generally
designed to describe the surface or the space above an
interactive table environment. Most currently available
TUIO implementations are concentrating on the 2D profiles
though. The specific set message syntax for the cursor and
object profiles include attributes such as position, velocity
and acceleration and is structured as following:

/tuio/2Dobj set sid id xpos ypos angle xvel yvel
rvel maccel raccel

/tuio/2Dcur set sid xpos ypos xvel yvel maccel

Updated TUIO 1.1 Specification
In order to provide a smooth transition path we are
introducing an intermediate and backwards-compatible
TUIO 1.1 specification, which adds two new features to the
existing protocol specification, without breaking the
existing client implementations: A third profile for the
description of untagged objects and the possibility of
multiplexing multiple tracker sources.
The complementary blob profile allows the further
distinction between identified tagged symbols and
unidentified plain blob objects, which are also providing
basic additional geometric information.

Figure 7: Simple description of a blob enclosure

/tuio/2Dblb set sid xpos ypos angle width height
area xvel yvel rvel macc racc

The profile’s set message format describes the inner ellipse
of an oriented bounding box, with its center point, the angle
of the longer axis, its width and height as well as the blob
area. Hence this compact format describes the approximate
elliptical blob enclosure, which also allows the
reconstruction of the oriented bounding box. The blob area
is normalized by pixels/width*height, providing quick
access to the overall blob size. The blob dimensions are
defined as normalized values after performing an inverse
rotation by -angle.

/tuio/[profile] source [name@address]

In order to allow the multiplexing of several TUIO trackers
on the client side, an optional source message can be
transmitted within each TUIO bundle, which enables the
identification of the bundle’s origin. The name@address
argument is a single string that specifies the application
name and any unique source address.
An issue, which currently cannot be addressed within a
backward compatible TUIO extension, is the lack of
reliable timing information. Assuming that OSC does
already provide a sufficient time tag within the actual
bundle header, we decided to not include a redundant time
tag into the TUIO message structure. Unfortunately OSC
implementations interpret the bundle time as a delivery
time, which in some cases could cause the OSC layer to
drop bundles with an earlier time stamp. The current TUIO
implementations partially intend to compensate this with
the inclusion of velocity and acceleration attributes within
the set message structure.

Since several TUIO developers are working with
Actionscript, the need for an alternative communication
model for Flash, which currently does not support UDP
sockets has emerged. The presently used workaround,
which expands TUIO/OSC messages to an XML format
that can be interpreted by Flash, is not comparable to the
good performance results delivered by the common UDP
transport method. As an alternative, TUIO can support an
additional TUIO/TCP mode or a Flash local connection,
which can be used for connecting to this kind of closed
environments. The transparency of alternative transport
methods is an advantage of the chosen OSC encoding.

Future TUIO 2.0 Specification
It has become clear that even with the intermediate protocol
extensions the current simplistic approach is by far not
sufficient for the description of a generalised tangible
interaction environment. While TUIO 1.1 already addresses
the basic needs for an additional descriptor for the object
geometry, the strict separation of cursor, object and blob
profiles is one of the mayor limitations for the future
protocol extensions. Also, the existing object profile is
lacking the possibility of transmitting marker content data
while the cursor profile is missing important attributes such
as cursor ID and pressure data. Finally TUIO is also
missing detailed timing information, which unfortunately
cannot be retrieved from the OSC bundle time tag as
originally intended. The number of potential enhancements
and changes to the current protocol structure justifies the
introduction of a new TUIO 2.0 protocol specification,
which eventually will resolve the shortcomings and design
limitations of the current protocol generation.
As a consequence TUIO 2.0 will allow a more substantial
update for the existing TUIO infrastructure. A flat and more
extensible profile structure, which also integrates better into
the overall OSC bundle and message formatting, will allow
future incremental message updates which can add
additional descriptors and functionality. Token, Pointer and
Geometry messages can now be handled in parallel and can
share the same session ID if these are actually referring to
the very same object. Therefore for example Pointer
messages can be extended with a bundled Bounds message,
which transmits the actual geometry in addition to the
generic pointer information. The basic geometry
descriptors, which are similar to the format introduced in
TUIO 1.1, can be incrementally extended with additional
messages describing the Contour, Skeleton or full Area of
the described region. It depends on the capabilities of the
tracker implementation or the actual application setup.
Tokens will carry an additional type ID, which allows the
multiplexing of various symbol types within a session. A
Token can be extended with more detail by an optional
Symbol message that encodes the information about the
actual marker type and content, which will allow the
introduction of alternative marker types, such as data matrix
(or QR) codes or RFID tags. Pointers will include various
additional attributes, such as pointer ID and type ID as well
as pressure and region of influence, and can be also

extended with optional Control messages, which allow the
encoding of additional control dimensions from buttons,
wheels, knobs or sliders. Finally the new TUIO protocol
generation will also allow the description of object
associations, such as container relationships or mechanical
connections between individual objects. This for example
allows the encoding of token-constraint systems as well as
constructive object assemblies, which will extend the
overall encoding possibilities from the purely spatial
approach of the original specification and will therefore
extend the scope of the protocol to support a broader range
of tangible user interfaces.
Although there are recent developments towards the
clarification of the OSC bundle timing with the introduction
of a revised OSC 1.1 specification [12], TUIO 2.0 will add
a redundant time tag to the fseq message of each frame,
providing fine-grained timing information, which is
necessary for correct gesture analysis. Since TUIO is based
on OSC, any implementation can already choose to define
its private message space in order to transmit custom
controller data. TUIO augments this possibility with the
definition of a Custom message syntax, which allows
associating these custom attributes to the existing TUIO
objects. There have been suggestions to introduce a back
channel for the configuration of the tracker environment,
but there are currently no plans to abandon the simplicity of
the current unidirectional protocol approach.
The TUIO 2.0 specification draft is already close to its
finalization, although we will wait until the consolidation of
the intermediate TUIO 1.1, before we will start with the
implementation of this next generation protocol. In order to
support the migration towards the new version, the
according client implementations will support both protocol
generations.

THIRD PARTY TUIO IMPLEMENTATIONS
During the early stages of the TUIO development, the
available tracker and client implementations were limited to
the reacTable and similar environments, for which we
initially designed this protocol. The first external project,
which picked up the TUIO protocol as an abstraction for
multi-touch interaction, was the touchlib library by David
Wallin. This was also one of the first publicly available
multi-touch tracking applications, since reacTIVision only
implemented the touch functionality at a later point. Since
then, a growing number of multi-touch and tangible
interaction platforms have implemented the TUIO protocol,
which lead to its more widespread adoption. A recently
established community website provides detailed
information about the current and future TUIO
specifications, implementation notes for the development of
TUIO enabled software as well as a growing list of client
and tracker applications that support our protocol.2 Please
also refer to this website for further information about the
projects mentioned in the following software selection.

2 http://www.tuio.org/

TUIO Trackers
The currently available tracker implementations mostly
include multi-touch software based on computer vision,
such as touché, BBTouch and Community Core Vision
(formerly tBeta). Further TUIO tracker implementations are
based on controller hardware such as the Wiimote
controller device, where WiimoteTUIO for example allows
the rapid development of Whiteboard applications using
only the IR tracking capabilities of a Wiimote controller
and a suitable TUIO client application. In addition to that,
there exist TUIO bridges for dedicated multi-touch
hardware, such as the devices from N-trig, which are
presently used for most available multi-touch tablet PCs.
Similar integration initiatives have been started for
Windows 7 and the Microsoft Surface, which have been
extended to provide TUIO support at the system level [13].
Finally there also exist a variety of iPhone applications,
which allow the usage of this hand-held device as a remote
multi-touch controller that can send the TUIO over its
wireless network connection. It has been shown that
especially for this application case, the TUIO state model
proved to be very robust on this error prone channel.

TUIO Clients
Apart from the primary TUIO client implementations,
which are available for most mainstream programming
languages and multimedia environments, the community
contributed a large collection of additional TUIO
implementations for several other environment that were
not directly support by ourselves. This includes
programming languages such as Objective C, Python,
Smalltalk, Ruby and Actionscript as well as sound and
media environments such as VVVV, SuperCollider, Chuck
or Open Frameworks, and there are also several higher-
level programming environments for gesture recognition
and tangible interface development for Java, C# or C++
available, that are using TUIO as the common input layer.
Based on the TUIO client reference implementations, which
basically decode the touch and object events from the
protocol, there is also a growing number of end user
applications available, taking advantage if these input
events as an alternative controller interface. Applications
such as NASA WorldWind, Google Earth, Second Life or
the Blender game engine have been enhanced with multi-
touch control with the help of the TUIO protocol.
Most recent versions of mainstream operating systems such
as Windows 7 and Mac OS X 10.6 already include system
level support for multi-touch input. Within the X-Window
system, which is commonly used on Linux operating
systems, the multi-pointer X-Server MPX [14] has recently
been included into the main branch and will therefore soon
become a standard component of all major Linux
distributions. We are currently involved in the integration
of the TUIO framework into MPX through the development
of the xf86-input-tuio driver component, which will allow
the seamless integration of the existing tracker software and
libraries into the operating system infrastructure.

CONCLUSIONS AND FUTURE WORK
We have shown and documented the improvements and
current functionality of the reacTIVision framework and
provided an outlook to the future blob geometry extension
that will be included within the next public version, which
is also reflected within an intermediate update to the TUIO
1.1 protocol. In parallel there is ongoing work towards the
definition and implementation of a future TUIO 2.0
protocol, which will hopefully provide a solid base for the
realization of more versatile interactive surface
environments. The future work on the tangible interaction
framework will also shift the focus to a more generalized
view of the overall TUIO platform, where reacTIVision
will serve as a common reference implementation for the
newly defined protocol features, which intends to open the
further development to third party implementations based
on alternative technologies.
Robust tracking performance regarding speed, latency and
reliability are even more important in the context of
expressive musical performance. Although our
improvements have shown to be suitable for live
performance conditions, optical tracking systems have also
clear limitations regarding their temporal resolution. State
of the art industrial cameras can deliver images at frame
rates between 60-200 Hz, hence while we are adding further
features to our tracking engine, we will ensure that frame
rates up to 200 Hz can be processed in real time and at a
reasonable latency. Apart from the common image analysis,
we are currently evaluating the incorporation of dedicated
GPU programming methods, which promise to deliver
improved image processing performance. This approach
will provide a responsive controller for musical
performance and will allow the implementation of more
fine-grained musical control gestures, such as performing a
vibrato or the tapping of a rhythm. Additionally we are also
looking into alternative sensor methods, which can augment
and improve the overall input performance.

ACKNOWLEDGEMENTS
This research has been conducted in the context of the
reacTable project, which is a team effort and has been
developed in collaboration with my colleagues Günter
Geiger, Marcos Alonso and Sergi Jordà within the Music
Technology Group at the Pompeu Fabra University in
Barcelona, Spain. The reacTIVision fiducial tracking
engine and amoeba symbols have been developed in
collaboration with Ross Bencina, and I’d also like to thank
Enrico Costanza for his initial contribution to its
development, as well as Till Bovermann for his
participation in the TUIO initiative, which had been
partially supported by the European Commission Cost287-
ConGAS action. Many thanks also to my thesis supervisors
Sile O’Modhrain and Xavier Serra for their valuable advice
during the course of the project.

REFERENCES
1. S. Jordà, M. Kaltenbrunner, G. Geiger, and R. Bencina,

"The reacTable," Proceedings of the International
Computer Music Conference, 2005.

2. J. Y. Han, "Multi-touch sensing through frustrated total
internal reflection," SIGGRAPH 2005 Sketches, 2005.

3. M. Kaltenbrunner, T. Bovermann, R. Bencina, and E.
Costanza, "TUIO - A Protocol for Table Based Tangible
User Interfaces," in GW '05: Proceedings of the 6th
International Workshop on Gesture in Human-
Computer Interaction and Simulation, 2005.

4. G. Reitmayr and D. Schmalstieg, "An open software
architecture for virtual reality interaction," VRST '01:
Proceedings of the ACM symposium on Virtual reality
software and technology, 2001.

5. M. Wright, A. Freed, and A. Momeni, "OpenSound
Control: state of the art 2003," NIME '03: Proceedings
of the 3rd conference on New interfaces for Musical
Expression, 2003.

6. M. Kaltenbrunner and R. Bencina, "reacTIVision: a
computer-vision framework for table-based tangible
interaction," TEI '07: Proceedings of the 1st
international conference on Tangible and embedded
interaction, 2007.

7. E. Costanza and J. A. Robinson, "A region adjacency
tree approach to the detection and design of fiducials,"
Vision, Video and Graphics (VVG), pp. 63–70, 2003.

8. R. Bencina, M. Kaltenbrunner, and S. Jorda, "Improved
Topological Fiducial Tracking in the reacTIVision
System," Proceedings of the IEEE International
Workshop on Projector-Camera Systems, 2005.

9. R. Bencina and M. Kaltenbrunner, "The Design and
Evolution of Fiducials for the reacTIVision System," in
Proceedings of the 3rd International Conference on
Generative Systems in the Electronic Arts, 2005.

10. R. E. Kalman, "A New Approach to Linear Filtering and
Prediction Problems," Transactions of the ASME--
Journal of Basic Engineering, pp. 35-45, 1960.

11. J. Bernsen, "Dynamic thresholding of grey-level
images," Proceedings of the 8th International
Conference on Pattern Recognition, pp. 1251–1255,
1986.

12. A. Freed and A. Schneider, "Features and Future of
Open Sound Control version 1.1 for NIME," NIME '09:
Proceedings of the 9th Conference on New Interfaces
for Musical Expression, 2009.

13. W. A. König, R. Rädle, and H. Reiterer, "Squidy: a
zoomable design environment for natural user
interfaces," CHI EA '09: Proceedings of the 27th
international conference on Human factors in
computing systems, 2009.

14. P. Hutterer and B. Thomas, "Groupware support in the
windowing system," AUIC '07: Proceedings of the eight
Australasian conference on User interface, 2007.

