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ABSTRACT 
This article presents the recent updates and an evaluation of 
reacTIVision, a computer vision toolkit for fiducial marker 
tracking and multi-touch interaction. It also discusses the 
current and future development of the TUIO protocol and 
framework, which has been primarily designed as an 
abstraction layer for the description and transmission of 
pointers and tangible object states in the context of 
interactive tabletop surfaces. The initial protocol definition 
proved to be rather robust due to the simple and 
straightforward implementation approach, which also 
supported its widespread adoption within the open source 
community. This article also discusses the current 
limitations of this simplistic approach and provides an 
outlook towards a next generation protocol definition, 
which will address the need for additional descriptors and 
the protocol’s general extensibility.  
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INTRODUCTION 
The TUIO protocol and reacTIVision framework comprise 
a toolkit for the rapid development of tabletop tangible user 
interfaces and multi-touch surfaces. Both components have 
been initially developed for musical applications in the 
context of the reacTable [1] project, a tangible modular 
synthesizer based on an interactive table surface. After the 
presentation of this instrument and also Jeff Han’s multi-
touch demos based on FTIR [2] had created considerable 
public interest in gesture-controlled surfaces, the TUIO 
protocol was eventually adopted by several open source 
initiatives with the goal to reverse engineer large multi-

touch surfaces. Access to such a variety of freely available 
tools based on a shared protocol supported the 
democratization of the emerging tangible and multi-touch 
user interface technology. Since their initial publication and 
release in 2005, TUIO [3] and the reacTIVision toolkit have 
been successfully used for the design and implementation 
of numerous research, commercial and hobbyist projects, 
supporting the widespread adoption of the tangible 
interaction paradigm. 

TANGIBLE SURFACE ABSTRACTION 
The initial goal of the TUIO protocol definition was to 
provide a simple description of pointer and token states in 
the context of a two dimensional table surface, where 
pointers are defined as untagged points with normalized 
Cartesian coordinates, while tangible tokens provide an 
additional identification tag and rotation angle. Although 
this is a very simplified view of an interactive surface 
context, this description provides a basic solution for the 
implementation of multi-touch surfaces and the tracking of 
tagged physical objects. Such a basic model has of course 
its limitations, which became even more evident with its 
adoption within other application areas as well as with the 
further development of the reacTIVision engine itself. We 
will discuss these limitations and the consequent future 
extensions to this model further below.  
After evaluating existing alternatives for the controller 
context [4], the TUIO protocol was based on Open Sound 
Control (OSC) [5], which has been widely adopted for the 
encoding of control data from musical instruments and 
general-purpose interactive devices. OSC successfully 
intends to overcome the performance limitations of the 
musical standard MIDI protocol, specifically regarding its 
bandwidth and data resolution, hence allowing for a more 
fine-grained control of advanced musical instrument 
designs. On the other hand the open approach of OSC 
compared to MIDI, makes it more difficult to interconnect 
arbitrary controller systems, therefore OSC based protocols 
such as TUIO need to define a clear semantics of the 
specific usage scenario within a separate message name 
space. TUIO in this case defines a range of profiles for the 
description of token and pointer state changes. Although 
OSC itself does not specify a default transport layer, most 
implementations including TUIO, are currently based on 
the delivery of UDP packets, which allow the necessary low 
latency delivery over commonly available local, wired or 
wireless IP networking infrastructure.  
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The initial application scenario for the TUIO protocol was 
defined by the interchange of control data between two or 
more table interfaces, which had been constructed for the 
first series of reacTable concerts, where four players were 
performing on two instruments located in different cities. 
Therefore the protocol design needed to be fast and robust 
enough for a musical performance over a standard Internet 
connection. Since the transmission of natural events - such 
as adding, moving and removing objects – could cause 
inconsistencies when certain events, most importantly the 
remove messages, are lost during transport, the protocol 
structure was specifically designed to stay consistent even 
when used on a fast but error prone UDP channel. Hence 
TUIO implements a state model instead of transmitting 
events, all currently active token and pointer identifiers are 
transmitted within each message bundle, which allows the 
continuous reconstruction of add and remove events on the 
receiving side by comparing the local and received 
identifiers. 
The specification of such a descriptive network based 
protocol suggests the design of a distributed architecture, 
separating the tracking sensor component from the actual 
user application. This distributed approach enables the 
interoperability of various sensor technologies, platforms 
and programming environments. Apart from earlier 
considerations regarding the limited processing power of a 
single CPU system, which nowadays have become less 
important with the advent of powerful multi-core 
processors, another motivation for choosing this 
architecture was the use of the framework for teaching 
purposes. Dealing with students from different backgrounds 
and with varying technical skills, ranging from engineers to 
artists, providing a collection of TUIO client 
implementations for programming languages such as C++. 
Java and C# and more importantly multimedia authoring 
tools such as Processing, Pure Data, Max/MSP, Quartz 
Composer and Flash, allowed the involved students to 
concentrate on the actual interface design task using the 
most appropriate tool. 

THE REACTIVISION ENGINE 
Since its last open source software release1 and the previous 
publication of its general functionality [6], the reacTIVision 
engine has undergone major feature and performance 
improvements. In addition to the significant improvement 
of the overall symbol tracking robustness, the recently 
published public version 1.4 also supports basic multi-touch 
finger tracking. While the initial versions of reacTIVision 
only performed the direct tracking of amoeba style fiducial 
symbols, which have been specifically developed in 
conjunction with the fiducial tracking core libfidtrack, the 
latest release introduces various tracking layers, which 
significantly enhance the symbol tracking performance. 
This is especially important in conditions with fast moving 
objects due to expressive gestures in musical performance. 

                                                             
1 http://reactivision.sourceforge.net/ 

Fiducial Tracking 
The principal fiducial tracking method used within 
reacTIVision is based on the analysis of region adjacency 
graphs, originally derived from Costanza’s d-touch concept 
[7]. After applying a local adaptive threshold to the original 
camera image, the resulting binary image is then segmented 
into a graph of adjacent black and white regions. Hence the 
identification of the amoeba symbols is based on a 
dictionary search of previously defined tree structures that 
are encoded into the marker topology, and the actual 
symbol layout carries additional information, which allows 
the precise calculation of the symbol centre point and its 
rotation angle [8]. 

 
Figure 1: a) fiducial tree and two possible representations,     

b) encoded center point and angle information 

Since the symbol structure allows an almost arbitrary 
representation of the actual geometry, we used a genetic 
algorithm [9] for the automatic generation of optimally 
shaped fiducial symbols, which eventually resulted in the 
organic amoeba appearance of the presently used fiducial 
marker collection. This genetic algorithm is driven by a 
fitness function that selects the generated symbols based on 
their size, symmetry and position and angle precision. The 
symbol position is calculated from the average of all leaf 
nodes, while the orientation vector points from the center 
point to the average of all black leaf nodes only. The 
current default set is for example defined by 18 nodes 
within a tree with maximum depth of two layers, which 
results in a possible range of 128 sequences, from which 
only 108 symbols have been selected to meet the minimum 
size and precision requirements. 
The limitation to dedicated tree spaces, with a clearly 
defined node count and tree depth ensures the overall 
tracking robustness, since it is rather improbable to find 
these complex tree structures within arbitrary image noise, 
which limits the probability of finding false positives. We 
also separate the currently used alternative symbol 
collections by at least three nodes in order to avoid wrong 
symbol identification due to erroneous image data. 
On the other hand this strict analysis is prone to minor 
changes of the symbol structure, such as addition and loss 
of individual leaf nodes, which can often appear in noisy or 
blurred images. While in these cases the algorithm is still 
capable of identifying the presence of a fiducial symbol in 
general, the identification of the individual symbol has 
become impossible, since the actual tree structure has been 
broken. Nevertheless we use the presence of unknown 
fiducial symbols within a secondary fuzzy fiducial tracking 
layer, where we simply assign unidentified erroneous 
symbol structures to the ones previously tracked nearby, 
which helps to improve the total symbol recognition rate.  



Fast expressive movements, which are very common within 
musical performance, unveil the limitations of optical 
tracking methods. Problems such as motion blur can only 
be partially resolved with shorter camera exposure times 
and stronger illumination. Since these parameters are 
limited, very fast object movements yield a blurry fiducial 
image and hence result in a complete destruction of the 
fiducial structure, making it impossible for both the 
standard and fuzzy tracking method to identify an actual 
symbol. Therefore a third layer is tracking the position of 
the root node region, the usually white fiducial background. 
With the knowledge of the previous fiducial position and 
the displacement of the region centre from the actual 
symbol centre, the position of fast moving fiducial markers 
can be updated very accurately using just the root node 
tracking method. To summarize, the trajectory of fast 
moving objects, can be tracked accurately with a 
combination of the three methods outlined above, where the 
symbol can be tracked in all individual frames without 
additional filtering methods. Currently we are allowing a 
single frame without tracking result, which we are using to 
calculate the correct speed and acceleration updates before 
the object is finally removed from the list if not found in the 
following frame. Since the actual position during this single 
frame is not updated, we are planning to introduce an 
additional Kalman filter [10] in order to estimate the 
position of the lost symbol, which then also can be 
reassigned more easily to a nearby root region.  
 

 
Figure 2: The three tracking modes a) full b) fuzzy and c) root 

region, depending on the retrieved symbol quality 

Finger Tracking 
The complementary multi-touch tracking layer introduced 
with the latest reacTIVision release takes advantage of the 
existing image processing infrastructure, without 
introducing a significant CPU overhead for this additional 
task. We are simply retrieving all white region candidates 
with a given size from the available image segmentation 
data and calculating the error comparing the candidate 
region to a round region prototype. The average finger size 
and maximum error can be adjusted within the application, 
yielding good tracking results in well-adjusted conditions. 
Compared to sole multi-touch trackers, reacTIVision is 
required to maintain the full fiducial structure intact, and 
therefore cannot afford the application of destructive image 
filters such as Gaussian blur in order to smooth the finger 
blob contour. Since this approach does not introduce any 
additional or parallel image filtering in order to enhance the 
source image, the initial configuration task of the camera 

settings and illumination environment has to be done more 
carefully than with comparable multi-touch only solutions. 
On the other hand this combined method ensures a low 
latency performance for musical applications, while 
providing simultaneous fiducial and finger tracking within 
the same image processing thread. The currently used tiled 
local adaptive threshold [11] method yields good results, 
and further improves the performance by neglecting tiles 
with a gradient below a configurable value. Unfortunately 
this method introduces square artifacts around low contrast 
regions, which can degrade the finger tracking accuracy. In 
order to improve the initial image quality we are currently 
evaluating alternative local adaptive threshold algorithms 
though, which should equally meet the requirements of the 
marker and blob tracking tasks. 
 

 
Figure 3: Original camera image and binary threshold image 

with finger and fiducial tracking feedback. 

Blob Tracking 
With the following release, we introduce an additional 
generic blob tracking layer, which is also taking advantage 
of the existing computational infrastructure, by selecting 
white regions within a given, configurable size range from 
the available segmentation data structures, while previously 
detected finger and fiducial root regions are excluded. In 
order to avoid additional image processing tasks, these 
regions are already encoded into a linked list of line spans 
during the segmentation process, which also annotates the 
final pixel area of each region. This data representation 
allows the reconstruction of the region contour and area 
without additional analysis of the actual source image itself, 
which again avoids additional processing overhead for this 
complementary tracking task. The span list implicitly 
encodes the full blob contour information in a compact 
format for further processing. The derived list of contour 
points can be efficiently reduced to the outer (and inner) 
blob contour, and consequently to a simplified list of 
contour points, which describes the overall blob geometry 
in sufficient detail. Finally for each of these retrieved 
regions, the oriented bounding box is calculated, which is 
providing an approximate description of its position, size 
and orientation. Current reacTIVision development builds 
already implement these basic geometry descriptors for 
untagged objects, which as a consequence have been also 
included within a third additional blob profile in an updated 
revision of the TUIO protocol, which we will describe in 
more detail below. The additional and more detailed 
geometry descriptors will be included in a future TUIO 2.0 
specification though. 



 

Amoeba Symbols 
In addition to the updates to the core tracking software 
described above, some significant improvements to the 
fiducial symbol layout and rendering have been 
implemented, which enhance the overall tracking 
performance in boundary conditions such as low camera 
resolutions, reduced symbol sizes or increased surface 
distance, all of which result in a smaller size of the symbol 
in the actual camera image. 
The number of symbols provided with the default set has 
been increased from the original 90 amoeba symbols to a 
total of 108 usable symbols out of the possible range of 128 
within the described tree space. An improved fiducial 
generation algorithm, which introduces - already during the 
generation process - the final selection rules based on the 
symbol size and orientation vector length, yielded 20% 
more usable symbols that met the imposed criteria.  By 
applying a high penalty to symbols that did not meet the 
initial size and vector boundaries, the genetic algorithm also 
converged much faster towards a usable symbol, thus 
reducing the overall generation time. 
The newly created symbol set had its minimum orientation 
vector length improved by almost 5%, which generally 
supports the more robust calculation of the symbols’ 
rotation angle. Also the maximum symbol size has been 
reduced by more than 10%, while as well showing a more 
uniform and narrow size distribution. 

 

 
Figure 4a: Distribution of the orientation vector length 

 
Figure 4b: Distribution of the symbol footprint size 

We also introduced an alternative set of smaller symbols 
from a different tree space with 12 nodes only. While this 
tree space contains 15 possible variations, we selected 12 
symbols that met the size and vector length criteria. This 
additional set can be used for applications that only require 
a limited set of different symbols IDs, but has the advantage 
of a reduced maximum symbol size by another 10% 
compared to the default amoeba set. In general, 
reacTIVision allows the usage of any arbitrary set of tree 
sequences, although we currently only provide these two 
subsets for the moment. Additional symbol collections can 
be added with a simple configuration file, but we 
recommend separating the selected tree spaces by at least 
three tree nodes, in order to avoid wrong symbol 
identifications. It should be also considered, that smaller 
symbol sets will not provide sufficiently precise position 
and rotation information, while these simpler tree 
configurations are also more likely to be found in arbitrary 
noise, and are therefore prone to yield false positives 
compared to the carefully selected standard symbols. 
Alternatively there are already third party fiducial 
generators available, which allow the generation of 
alternative symbols of any desired tree size.  

 
Figure 5: comparing the original symbol rendering (top row) 

to the improved rendering method (bottom row) 

An improved graphical rendering method for the amoeba 
symbols introduces relatively enlarged leaf node 
proportions, which also support a better tracking 
performance of small scale or distant markers. Finally this 
new symbol set has been released in a vector based PDF 
format, which allows a high quality printing of the marker 
collection in any arbitrary size. 
In order to increase the number of available marker IDs, the 
collection of 108 plus 12 standard symbols has been 
doubled though the addition of the inverted symbols with 
an initial black root node, resulting in a total number of 216 
plus 24 standard symbols that are delivered with the current 
public release. This total of 240 distinguishable default 
markers should be sufficient for most application cases, 
considering that the individual marker IDs can also be 
repeated within the same context. 



Performance Evaluation 
The combination of the three marker tracking methods yield 
a satisfactory tracking performance even with fast moving 
objects, provided the camera and illumination settings are 
optimally configured with an appropriate short exposure 
time, which also guarantees a low latency image 
acquisition. The following chart illustrates the 
improvements in these boundary conditions, where the 
symbol structure is partially destroyed due to motion blur 
caused by expressive object handling as shown above. 
 

 
Figure 6: Tracking modes at varying speeds. 

An evaluation of the tracking accuracy of resting symbols 
showed a standard deviation of around 0.05 pixels for the 
symbol centre point and a standard deviation of around 0.5 
degrees for the rotation angle. These results allow for single 
pixel position accuracy and a rotation angle accuracy of 
three degrees in normal conditions, without significant jitter 
problems. We expect to improve the tracking accuracy for 
the rotation angle with the introduction of an additional 
Kalman filter component. 
Performance measures of the latency of the current image 
processing chain depend on various factors, such as the 
camera resolution and resulting buffer size, the platform, 
compiler and CPU speed of the test system. Evaluating the 
frame latency on a 2GHz Core Duo Macbook on Linux, the 
median processing, analysis and delivery time for a VGA 
sized frame ranges around 5ms, which results in an 
acceptable system latency considering the complexity of the 
task. The following table illustrates the evolution of the 
processing latency for fiducial tracking adding the 
additional finger and blob tracking layers. 

 
 ICC 11.0 GCC 4.4 
Fiducial tracking 4.8 ms 5.6 ms 
Fiducial & touch tracking 5.0 ms 6.0 ms 
Fiducial & touch & contour 5.4 ms 6.5 ms 

 
A more detailed analysis and review of the tracking 
performance for various conditions such as fiducial size, 
and comparison with other marker systems would 
unfortunately exceed the limits of this article and will be 
therefore addressed in a subsequent publication. 

THE TUIO PROTOCOL 
The original TUIO protocol specification was concentrating 
on the specific needs of the reacTable project, mainly 
focusing on tagged object and finger tracking in the context 
of a remote collaboration scenario, while ensuring the 
overall robustness of the networked distributed system. 
During the development and feature enhancements of our 
own tracking application, as well as with the integration of 
the TUIO protocol into further projects, several issues 
regarding missing features within the present profiles and 
the need for additional protocol extensions emerged. The 
extension of the existing message structure needs to be 
planned carefully though, considering the stability of all 
current implementations that rely on solid shared protocol 
definition. 

Original TUIO Specification 
A TUIO profile defines two central messages: set messages 
and alive messages. Set messages are used to communicate 
information about a token's state such as position, 
orientation, velocity and acceleration. Alive messages 
indicate the current set of tokens present on the surface 
using a list of unique session IDs. Additional fseq messages 
are defined to tag each frame update with a unique 
sequence ID. At typical TUIO bundle is therefore typically 
comprised of at least three messages, while the set 
messages can be accumulated in order to fully use the 
available space of a UDP packet. TUIO messages are 
commonly delivered to UDP port 3333 in the default 
configuration, although alternative transport methods are 
equally allowed.  Please note that the following clear text 
message representations are only for demonstration 
purposes, the actual OSC message is transmitted in a 
compact binary format. 

 
/tuio/[profile] alive [active session_IDs] 
 
/tuio/[profile] set [session_ID attributes] 
 
/tuio/[profile] fseq [int32] 
 

There are two basic profiles for the description of 
pointers and tokens (here cursors and objects), which are 
commonly used within the context of a 2D surface. There 
exist additional profiles for 2.5D environments, which 
include the distance to the surface, as well as 3D 
environments, which also provide 3D rotation information 
for the object profiles.  All profile types are generally 
designed to describe the surface or the space above an 
interactive table environment. Most currently available 
TUIO implementations are concentrating on the 2D profiles 
though. The specific set message syntax for the cursor and 
object profiles include attributes such as position, velocity 
and acceleration and is structured as following: 
 
/tuio/2Dobj set sid id xpos ypos angle xvel yvel 
rvel maccel raccel 
 
/tuio/2Dcur set sid xpos ypos xvel yvel maccel 
 



 

Updated TUIO 1.1 Specification 
In order to provide a smooth transition path we are 
introducing an intermediate and backwards-compatible 
TUIO 1.1 specification, which adds two new features to the 
existing protocol specification, without breaking the 
existing client implementations: A third profile for the 
description of untagged objects and the possibility of 
multiplexing multiple tracker sources. 
The complementary blob profile allows the further 
distinction between identified tagged symbols and 
unidentified plain blob objects, which are also providing 
basic additional geometric information. 

 
Figure 7: Simple description of a blob enclosure 

 
/tuio/2Dblb set sid xpos ypos angle width height 
area xvel yvel rvel macc racc 
 
The profile’s set message format describes the inner ellipse 
of an oriented bounding box, with its center point, the angle 
of the longer axis, its width and height as well as the blob 
area. Hence this compact format describes the approximate 
elliptical blob enclosure, which also allows the 
reconstruction of the oriented bounding box. The blob area 
is normalized by pixels/width*height, providing quick 
access to the overall blob size. The blob dimensions are 
defined as normalized values after performing an inverse 
rotation by -angle. 
 
/tuio/[profile] source [name@address] 
 
In order to allow the multiplexing of several TUIO trackers 
on the client side, an optional source message can be 
transmitted within each TUIO bundle, which enables the 
identification of the bundle’s origin. The name@address 
argument is a single string that specifies the application 
name and any unique source address. 
An issue, which currently cannot be addressed within a 
backward compatible TUIO extension, is the lack of 
reliable timing information. Assuming that OSC does 
already provide a sufficient time tag within the actual 
bundle header, we decided to not include a redundant time 
tag into the TUIO message structure. Unfortunately OSC 
implementations interpret the bundle time as a delivery 
time, which in some cases could cause the OSC layer to 
drop bundles with an earlier time stamp. The current TUIO 
implementations partially intend to compensate this with 
the inclusion of velocity and acceleration attributes within 
the set message structure. 

Since several TUIO developers are working with 
Actionscript, the need for an alternative communication 
model for Flash, which currently does not support UDP 
sockets has emerged. The presently used workaround, 
which expands TUIO/OSC messages to an XML format 
that can be interpreted by Flash, is not comparable to the 
good performance results delivered by the common UDP 
transport method. As an alternative, TUIO can support an 
additional TUIO/TCP mode or a Flash local connection, 
which can be used for connecting to this kind of closed 
environments. The transparency of alternative transport 
methods is an advantage of the chosen OSC encoding. 

Future TUIO 2.0 Specification 
It has become clear that even with the intermediate protocol 
extensions the current simplistic approach is by far not 
sufficient for the description of a generalised tangible 
interaction environment. While TUIO 1.1 already addresses 
the basic needs for an additional descriptor for the object 
geometry, the strict separation of cursor, object and blob 
profiles is one of the mayor limitations for the future 
protocol extensions. Also, the existing object profile is 
lacking the possibility of transmitting marker content data 
while the cursor profile is missing important attributes such 
as cursor ID and pressure data. Finally TUIO is also 
missing detailed timing information, which unfortunately 
cannot be retrieved from the OSC bundle time tag as 
originally intended. The number of potential enhancements 
and changes to the current protocol structure justifies the 
introduction of a new TUIO 2.0 protocol specification, 
which eventually will resolve the shortcomings and design 
limitations of the current protocol generation. 
As a consequence TUIO 2.0 will allow a more substantial 
update for the existing TUIO infrastructure. A flat and more 
extensible profile structure, which also integrates better into 
the overall OSC bundle and message formatting, will allow 
future incremental message updates which can add 
additional descriptors and functionality. Token, Pointer and 
Geometry messages can now be handled in parallel and can 
share the same session ID if these are actually referring to 
the very same object. Therefore for example Pointer 
messages can be extended with a bundled Bounds message, 
which transmits the actual geometry in addition to the 
generic pointer information. The basic geometry 
descriptors, which are similar to the format introduced in 
TUIO 1.1, can be incrementally extended with additional 
messages describing the Contour, Skeleton or full Area of 
the described region. It depends on the capabilities of the 
tracker implementation or the actual application setup. 
Tokens will carry an additional type ID, which allows the 
multiplexing of various symbol types within a session. A 
Token can be extended with more detail by an optional 
Symbol message that encodes the information about the 
actual marker type and content, which will allow the 
introduction of alternative marker types, such as data matrix 
(or QR) codes or RFID tags. Pointers will include various 
additional attributes, such as pointer ID and type ID as well 
as pressure and region of influence, and can be also 



extended with optional Control messages, which allow the 
encoding of additional control dimensions from buttons, 
wheels, knobs or sliders. Finally the new TUIO protocol 
generation will also allow the description of object 
associations, such as container relationships or mechanical 
connections between individual objects. This for example 
allows the encoding of token-constraint systems as well as 
constructive object assemblies, which will extend the 
overall encoding possibilities from the purely spatial 
approach of the original specification and will therefore 
extend the scope of the protocol to support a broader range 
of tangible user interfaces. 
Although there are recent developments towards the 
clarification of the OSC bundle timing with the introduction 
of a revised OSC 1.1 specification [12], TUIO 2.0 will add 
a redundant time tag to the fseq message of each frame, 
providing fine-grained timing information, which is 
necessary for correct gesture analysis. Since TUIO is based 
on OSC, any implementation can already choose to define 
its private message space in order to transmit custom 
controller data. TUIO augments this possibility with the 
definition of a Custom message syntax, which allows 
associating these custom attributes to the existing TUIO 
objects. There have been suggestions to introduce a back 
channel for the configuration of the tracker environment, 
but there are currently no plans to abandon the simplicity of 
the current unidirectional protocol approach. 
The TUIO 2.0 specification draft is already close to its 
finalization, although we will wait until the consolidation of 
the intermediate TUIO 1.1, before we will start with the 
implementation of this next generation protocol. In order to 
support the migration towards the new version, the 
according client implementations will support both protocol 
generations. 

THIRD PARTY TUIO IMPLEMENTATIONS 
During the early stages of the TUIO development, the 
available tracker and client implementations were limited to 
the reacTable and similar environments, for which we 
initially designed this protocol. The first external project, 
which picked up the TUIO protocol as an abstraction for 
multi-touch interaction, was the touchlib library by David 
Wallin. This was also one of the first publicly available 
multi-touch tracking applications, since reacTIVision only 
implemented the touch functionality at a later point. Since 
then, a growing number of multi-touch and tangible 
interaction platforms have implemented the TUIO protocol, 
which lead to its more widespread adoption. A recently 
established community website provides detailed 
information about the current and future TUIO 
specifications, implementation notes for the development of 
TUIO enabled software as well as a growing list of client 
and tracker applications that support our protocol.2 Please 
also refer to this website for further information about the 
projects mentioned in the following software selection. 

                                                             
2 http://www.tuio.org/ 

TUIO Trackers 
The currently available tracker implementations mostly 
include multi-touch software based on computer vision, 
such as touché, BBTouch and Community Core Vision 
(formerly tBeta). Further TUIO tracker implementations are 
based on controller hardware such as the Wiimote 
controller device, where WiimoteTUIO for example allows 
the rapid development of Whiteboard applications using 
only the IR tracking capabilities of a Wiimote controller 
and a suitable TUIO client application. In addition to that, 
there exist TUIO bridges for dedicated multi-touch 
hardware, such as the devices from N-trig, which are 
presently used for most available multi-touch tablet PCs. 
Similar integration initiatives have been started for 
Windows 7 and the Microsoft Surface, which have been 
extended to provide TUIO support at the system level [13]. 
Finally there also exist a variety of iPhone applications, 
which allow the usage of this hand-held device as a remote 
multi-touch controller that can send the TUIO over its 
wireless network connection. It has been shown that 
especially for this application case, the TUIO state model 
proved to be very robust on this error prone channel. 

TUIO Clients 
Apart from the primary TUIO client implementations, 
which are available for most mainstream programming 
languages and multimedia environments, the community 
contributed a large collection of additional TUIO 
implementations for several other environment that were 
not directly support by ourselves. This includes 
programming languages such as Objective C, Python, 
Smalltalk, Ruby and Actionscript as well as sound and 
media environments such as VVVV, SuperCollider, Chuck 
or Open Frameworks, and there are also several higher-
level programming environments for gesture recognition 
and tangible interface development for Java, C# or C++ 
available, that are using TUIO as the common input layer.  
Based on the TUIO client reference implementations, which 
basically decode the touch and object events from the 
protocol, there is also a growing number of end user 
applications available, taking advantage if these input 
events as an alternative controller interface. Applications 
such as NASA WorldWind, Google Earth, Second Life or 
the Blender game engine have been enhanced with multi-
touch control with the help of the TUIO protocol. 
Most recent versions of mainstream operating systems such 
as Windows 7 and Mac OS X 10.6 already include system 
level support for multi-touch input. Within the X-Window 
system, which is commonly used on Linux operating 
systems, the multi-pointer X-Server MPX [14] has recently 
been included into the main branch and will therefore soon 
become a standard component of all major Linux 
distributions. We are currently involved in the integration 
of the TUIO framework into MPX through the development 
of the xf86-input-tuio driver component, which will allow 
the seamless integration of the existing tracker software and 
libraries into the operating system infrastructure. 



 

CONCLUSIONS AND FUTURE WORK 
We have shown and documented the improvements and 
current functionality of the reacTIVision framework and 
provided an outlook to the future blob geometry extension 
that will be included within the next public version, which 
is also reflected within an intermediate update to the TUIO 
1.1 protocol. In parallel there is ongoing work towards the 
definition and implementation of a future TUIO 2.0 
protocol, which will hopefully provide a solid base for the 
realization of more versatile interactive surface 
environments. The future work on the tangible interaction 
framework will also shift the focus to a more generalized 
view of the overall TUIO platform, where reacTIVision 
will serve as a common reference implementation for the 
newly defined protocol features, which intends to open the 
further development to third party implementations based 
on alternative technologies. 
Robust tracking performance regarding speed, latency and 
reliability are even more important in the context of 
expressive musical performance. Although our 
improvements have shown to be suitable for live 
performance conditions, optical tracking systems have also 
clear limitations regarding their temporal resolution. State 
of the art industrial cameras can deliver images at frame 
rates between 60-200 Hz, hence while we are adding further 
features to our tracking engine, we will ensure that frame 
rates up to 200 Hz can be processed in real time and at a 
reasonable latency. Apart from the common image analysis, 
we are currently evaluating the incorporation of dedicated 
GPU programming methods, which promise to deliver 
improved image processing performance. This approach 
will provide a responsive controller for musical 
performance and will allow the implementation of more 
fine-grained musical control gestures, such as performing a 
vibrato or the tapping of a rhythm. Additionally we are also 
looking into alternative sensor methods, which can augment 
and improve the overall input performance. 
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