

 1

�

reacTIVision: A Computer-Vision Framework for Table-
Based Tangible Interaction

Martin Kaltenbrunner

Music Technology Group

Universitat Pompeu Fabra

Barcelona, Spain

mkalten@iua.upf.es

Ross Bencina

Sonic Fritter Pty Ltd

Melbourne, Australia

rossb@audiomulch.com

ABSTRACT

This article provides an introductory overview to first-time

users of the reacTIVision framework – an open-source

cross-platform computer-vision framework primarily

designed for the construction of table-based tangible user

interfaces. The central component of the framework is a

standalone application for fast and robust tracking of

fiducial markers in a real-time video stream. The

framework also defines a transport protocol for efficient

and reliable transmission of object states via a local or wide

area network. In addition, the distribution includes a

collection of client example projects for various

programming environments that allow the rapid

development of unique tangible user interfaces. This article

also provides a discussion of key points relevant to the

construction of the necessary table hardware and surveys

some projects that have been based on this technology.

Author Keywords

Tangible User Interface, Computer Vision, Application

Development Framework.

ACM Classification Keywords

H.5.2. User Interfaces, I.4.9. Image Processing and

Computer Vision Applications, D.2.6. Programming

Environment

INTRODUCTION

The reacTIVision framework has been developed as the

primary sensor component for the reacTable [5], a tangible

electro-acoustic musical instrument. It uses specially

designed visual markers (fiducial symbols) [fig. 2] that can

be attached to physical objects. The markers are recognized

and tracked by a computer vision algorithm optimized for

the specific marker design [1] improving the overall speed

and robustness of the recognition process. These fiducial

marker symbols allow hundreds of unique marker identities

to be distinguished as well as supporting the precise

calculation of marker position and angle of rotation on a 2D

plane.

reacTIVision and its components have been made available

under a combination of open source software licenses

(GPL, LGPL, BSD) and can be obtained both as ready to

use executable binaries and as source code from a public

SourceForge site
1
. This document describes the features of

reacTIVision 1.3 which has been released in conjunction

with the publication of this article. The reacTable software

website
2
 provides further information about the project.

ARCHITECTURE

reacTIVision has been designed as a distributed application

framework rather than an object code library. Each

component of the system is implemented as a separate

executable process. Communication between components is

achieved using a published protocol. This design simplifies

use for novice programmers and facilitates integration with

popular programming environments such as Processing and

Pure Data. The architecture also allows the execution of

framework components on different machines, which can

be useful in certain installation contexts.

Fig. 1: reacTIVision diagram

1
 http://www.sourceforge.net/projects/reactivision

2
 http://mtg.upf.edu/reactable?reactivision

Recognition Component

The reacTIVision application acquires images from the

camera, searches the video stream frame by frame for

fiducial symbols and sends data about all identified symbols

via a network socket to a listening application. The

reacTIVision application has been designed in a modular

way, making it easy to add new image recognition and

frame processing components.

The code base is cross-platform with builds for all three

major operating systems, Windows, Mac OS X and Linux.

It has been written in portable C++ code, combined with

platform-dependent frame acquisition components. The

video acquisition framework is also available separately as

open source software under the name PortVideo.
3

Communication Component

ReacTIVision defines its own communication protocol

TUIO [6] that was specifically designed for the needs of

tabletop tangible user interfaces: encoding and transmitting

the attributes of tangible artifacts that are found on a table

surface. In order to provide fast and reliable communication

with local and remote client applications the protocol layers

a redundant messaging structure over UDP transport. TUIO

defines a set of Open Sound Control [10] protocol

messages. These messages constantly transmit the presence,

position and angle of all found symbols along with further

derived parameters. On the client side these redundant

messages are then decoded to generic add, update and

remove events corresponding to the physical actions that

have been applied to each tangible object.

In order to achieve maximum compatibility with existing

musical application environments reacTIVision can

alternatively send MIDI [8] control messages that can be

individually configured for each fiducial symbol. However,

due to the various limitations of MIDI, such as bandwidth

and data resolution, TUIO is the recommended and default

transport layer.

Client Components

In order to facilitate the development of tangible interface

applications the reacTIVision framework provides a large

collection of example clients for a variety of programming

languages including C++, C#, Java, Processing and Pure

Data. Example clients provide a full TUIO client

implementation that decodes the messages to generic

interface events and draws the results into a graphical

window or simply prints them to the console. Additional

unsupported example projects are available for

SuperCollider, Max/MSP and Flash. The TUIO simulator

written in platform independent Java can be used to

simulate a table environment during the initial development

phase.

3
 http://www.sourceforge.net/projects/portvideo/

FIDUCIAL ENGINES

This section gives some background regarding the history,

design, evolution, and capabilities of the marker tracking

implementations employed by reacTIVision.

After some initial experiments with publicly available

marker systems such as ARToolkit [7], the first reacTable

prototype made use of E. Costanza's original D-touch [3]

code, which was kindly provided by its author. Further

development of the reacTable generated requirements for

more compact symbol sizes as well as improved processing

speed for real time musical interaction. This first lead to a

reimplementation of the d-touch tracking algorithm with

significant performance gains. Subsequently the fiducial

marker geometry was redesigned to take advantage of a

genetic algorithm, which minimized marker size and

facilitated a more efficient tracking algorithm. All three

fiducial recognition engines (d-touch, classic and amoeba)

are available within the reacTIVision application, with the

most recent and reliable amoeba engine as the default.

In all three fiducial engines the source image frame is first

converted to a black & white image with an adaptive

threshold algorithm. This image is then segmented into a

region adjacency graph reflecting the containment structure

of alternating black and white regions. This graph is

searched for unique tree structures, which are encoded into

the fiducial symbols. Finally the identified trees are

matched to a dictionary to retrieve unique marker ID

numbers.

Amoeba Engine

The highly compact geometry of the amoeba fiducials was

obtained by a genetic algorithm. This GA optimized the

fiducial appearance using a set of fitness functions targeting

shape, footprint size, center point and rotation angle

accuracy. The current set distributed with reacTIVision

contains 90 different symbols that have been chosen from a

pool of 128 with certain tree structure constraints. In this

case all symbols have 19 leaf nodes and a maximum tree

depth of 2. The limitation to specific tree structure

constraints allows the exclusion of other structures found in

noise, providing higher robustness of the algorithm by

avoiding the detection of false positives.

The position of an amoeba symbol is calculated as the

centroid of all found leaf nodes (small circular monochrome

blobs), which provides sub-pixel accuracy. The orientation

of the marker is calculated as the vector from the marker

centroid to the centroid of all black leafs which are

distributed in the upper part of the symbol.

A second fiducial set used internally for reacTable

installations provides roughly 300 extra symbols that are

usually printed onto business cards and handed out to the

public. Just as with the standard symbol set, unique fiducial

IDs are derived by comparing the detected tree structure to

a dictionary of known trees.

 3

�

Finger Tracking

As an initial solution for the tracking of fingertips in a

multi-touch surface the simplest amoeba fiducial, with a

single tree branch [fig. 2d] can be used as a small finger

sticker. While this method is not as elegant as other optical

finger tracking methods [4] it has proved to be simple and

robust without any additional computational overhead since

it can be detected using the existing fiducial tracking

algorithm. Due to the minimal nature of the symbol, no

rotation angle can be calculated from its structure, although

in the case of tracking the finger as a simple pointer the

position information alone is sufficient. One drawback of

this symbol's simple tree structure is the possibility of

finding false positives in noise. In most cases false-

positives can be filtered by taking into account the presence

and trajectory of potential finger markers in past frames and

neglecting the appearance of false positives in isolated

frames.

Recent reacTIVision development builds contain an

improved plain finger tracking component, without the need

of the described finger symbol sticker. This layer is fully

taking advantage of information already provided by the

segmenter in order to identify and track fingertips that are

touching the table surface, at no significant additional

computational cost. This additional plain object tracking

also provided a method of double-checking objects that

have been lost by the fiducial tracking core, which

significantly improved the overall tracking robustness. Due

to the relatively recent addition to the code base, this

feature along with formal comparative results on its

performance will be made available together with a future

reacTIVision release.

Fig. 2: symbols a) amoeba b) classic c) d-touch d) finger

Classic Engine

The "classic" fiducial tracking engine uses the original d-

touch fiducial set (figure 2b) and geometry evaluation

scheme while its code-base has been re-implemented from

scratch. The dice shaped fiducial symbols can represent 120

different identities that are obtained by permutations of the

positions of regions with two to six sub-regions. The

primary region with a single sub region is used for the

determination of the rotation angle and is therefore always

placed in the upper left corner of the symbol. As already

mentioned above, the dice symbols do not optimally use the

available space and the calculation of the fiducial center

point and rotation angle is not as accurate as with the

amoeba set.

D-Touch Engine

The original d-touch code was eventually released publicly

under the GPL license and has since been integrated into

reacTIVision. Although D-Touch can use a variety of

different topology based symbol sets, including the original

dice set used by the classic fiducial tracking engine, the

implementation embedded in reacTIVision uses a reduced

subset of the dice style symbols with 24 permutations of

regions with one to four sub-regions. The extra region

needed for angle calculation is a single empty box on top of

the symbol, which occupies less space then the main code

regions.

HOW TO BUILD A TABLE INTERFACE

Table Construction

The design of a table depends on both general application

requirements and the installation environment. For a

musical instrument the table needs to be mobile and easy to

assemble and disassemble, for public installation the table

needs to be robust and accessible. In many cases a standard

glass table might be sufficient for building a first prototype.

Apart from the general structure, the table's most important

component is its surface.

Whether used with or without projection, it is

recommended that the table's surface be semitransparent,

such as sanded glass or Plexiglas with a blurring coating.

One simple way to achieve a blurring surface is to place a

sheet of ordinary tracing paper on the table. The reason a

blurring surface is desirable is that on transparent surfaces

objects can be tracked above the table until the image loses

focus, sometimes leading to unpredictable detection results.

It is usually desirable that the objects are detected only

when they are in contact with the table's surface, such that

they disappear from the camera's view immediately when

lifted. In addition to improving sensor behavior a

semitransparent surface serves as an ideal projection screen

for projected visual feedback, which in many cases is

needed for table-based tangible user interfaces.

Camera & Lens

reacTIVision in general will work with any type of camera

and lens. Most of the better quality USB or FireWire web-

cams with a resolution of 640x480 at 30fps will be

sufficient. For larger tables, industrial grade USB2 or

FireWire cameras provide higher resolutions and frame

rates. If DV or video cameras are to be used, they need to

support full frame mode, since an interlaced video signal

completely destroys the structure of fiducial symbols in

motion.

When working with any computer vision system, the

overall recognition performance is strongly dependent on

the source image quality. Image quality results from a

combination of various factors, which include the camera

sensor, the lens quality, the illumination and other

important camera and lens settings. In general we have

found that cameras with CCD sensors provide much better

overall image quality than CMOS sensors. Cameras with an

exchangeable lens mount are to be preferred. To decrease

the minimum distance to a sufficiently large surface the

system needs to use wide-angle lenses. The necessary focal

length of the lens can be calculated as a function of the

sensor size, the distance to the surface and the diameter of

the viewable area of the surface. Be aware that some

consumer grade “wide-angle” lenses may not focus

consistently across the full viewing area which can have

detrimental effects on tracking performance.

To set up the best image quality obviously requires that the

lens is focused. A simple focusing procedure is to fully

open the iris and then try to achieve the best possible focus.

After that the iris can be slowly closed until a perfectly

sharp image is achieved. In addition to focus, the camera's

shutter speed needs to be fast enough to avoid motion blur,

since long exposure times will cause blurry images of

moving fiducial symbols, making them more difficult or

impossible to recognize. Both narrower iris and faster

shutter speeds result in less light reaching the sensor, which

needs to be compensated by stronger illumination. Low

lighting levels can also be corrected slightly by increasing

the sensor gain, although too much gain will decrease the

image quality by introducing grainy noise.

Illumination

In a camera-projector system the two visual components

need to operate in different spectral bands so they do not

interfere with each other. Since the projector obviously

needs to operate in the visible range, the camera has to

work in the infrared (IR) spectrum only. CCD camera

sensors are perfectly sensitive to infrared light, but most of

the time are protected with an IR filter which needs to be

removed from the sensor housing or lens. At the same time

the table setup needs to be illuminated with strong and

diffuse IR light, which is completely invisible to the eye

and therefore does not interfere with the table projection.

Suitable light sources are IR LED arrays which are

available in different intensities, alternatively one could use

halogen lights, which produce a lot of IR but need to be

equipped with IR pass filters which can be purchased in any

photography shop. These IR pass filters also need to be

applied to the camera in order to filter all visible light, most

importantly from the projection, since the projected image

would otherwise overlay and interfere with the fiducial

symbols. In the case where no projection is required, the

setup can operate in the visible spectrum, significantly

simplifying the illumination process.

Mirrors and lens distortion

If a camera or projector does not have a sufficiently wide-

angle lens, placing a mirror into the table helps to achieve a

larger active surface while maintaining a relatively low

table height. Unfortunately mirrors as well as wide-angle

lenses produce distorted images both for the projection and

the camera image.
4
 reacTIVision comes with a built-in

calibration component which offers a simple mechanism to

correct these distortion errors. In the case of projection the

image needs to be pre-distorted by applying the image as a

texture onto a virtual surface in order to again appear

straight on the table surface. The TUIO distortion example

code provides a simple graphical feedback component with

built-in distortion engine. Both distortion components, the

reacTIVision sensor application as well as the application

providing the visual feedback, need to be calibrated in order

to match the physical object position with the virtual

projection position. See the usage section below for more

details on the calibration process.

Computer Hardware

The rest of the hardware can be built from standard off-the-

shelf components. In many cases a modern dual-core

computer will be more than sufficient to handle both the

computer vision component along with the actual tangible

interface application. For self-contained table setups a

laptop or small shuttle PC might be the right choice if

everything needs to fit inside the table. The projector

usually resides underneath the projection surface pointing at

a mirror on the table's bottom edge, therefore a small form-

factor combined with a strong lamp and an appropriate

wide-angle lens are its most important features. Since

projectors can produce a considerable amount of heat,

appropriate ventilation must be assured to avoid

overheating within the table.

Tangibles

Almost any object, including simple wooden or plastic

geometric shapes, everyday objects or artifacts, and even

food or vegetables can be turned into an easily trackable

tangible interface component by attaching a fiducial marker

to it. Ideally the symbol has to be attached on the bottom

side of the object in order to hide it from the user's attention

and also to avoid possible hand occlusion problems. The

fiducial symbol set can be printed with a laser printer onto

ordinary white office paper. Gray recycled paper is less

desirable as it tends to degrade symbol contrast. Some ink-

jet inks are invisible in the infrared domain and therefore

unusable for IR illuminated setups, although such ink can

be used to add additional user-readable color codes to the

symbols that stay invisible to the computer vision

component. In order to protect the symbols from scratches,

and color loss, the printed paper surface can be coated with

transparent adhesive foil, which also simplifies cleaning of

the symbol's surface from dirty spots that can degrade

recognition.

4
 Note that here we are referring to spatial warping rather

than inconsistent focus across the image, which cannot be

corrected.

 5

�

FRAMEWORK USAGE

reacTIVision application handling

The main reacTIVision application only provides a very

simple GUI showing the actual camera image and some

visual feedback on the fiducial detection performance. It is

generally configured by calling the application with various

command line options at startup and can be controlled with

some key commands during execution.

Startup options include the configuration of the following

features. See the documentation that comes with the

application for more details.

• Distortion mode and calibration file

• Fiducial engine alternatives

• TUIO host name and port number

• Optional MIDI transport and configuration file

• Parameter inversion (when using mirrors)

During runtime the following features of the reacTIVision

application can be controlled using simple key commands.

• Switch to calibration mode

• Change the display type

• Verbose on screen and console feedback

• Application control: pause and exit

Distortion calibration procedure

This section briefly explains the calibration procedure using

the reacTIVision sensor application in conjunction with the

TUIO distortion example, made available by Marcos

Alonso as part of the reacTIVision framework. This

example application can be extended to take advantage of

its distortion correction functionality.

In the calibration folder that comes with the application

package there are two calibration sheet examples for

rectangular and square table setups, which can also be used

for round tables. Print the desired document scaled to match

the size of your visible table surface and place the sheet

onto the table with the calibration grid facing downwards.

Start the TUIO_Distort application and switch to calibration

mode by hitting the ‘c’ key. Using the keys ‘a,w,d,x’ adjust

each vertex on the projected grid to match the vertices on

the sheet. You can navigate between vertices using the

cursor keys. After finishing this first calibration step you

can switch the TUIO_Distort application to normal mode

by hitting the ‘c’ key again while leaving the calibration

sheet untouched in its positions on the table. Now start the

reacTIVision application in distortion mode by providing a

grid file with the ‘-g’ option. Once started, switch into

calibration mode by hitting the ‘c’. In a the same ways as

for the calibration procedure of the projected graphics, you

now need to adjust each vertex to match the grid on the

sheet by using the keys mentioned above. After finishing

this second calibration step and exiting the calibration mode

by hitting the ‘c’ key, both applications will be

synchronized and the projected visual object feedback

should exactly match the physical object positions. You can

see a preview the resulting image distortion within

reacTIVision by hitting the ‘g’ key.

Application programming

All of the TUIO client examples for standard object

oriented programming languages, such as C++, C#, Java

and Processing implement an event based callback

mechanism that notifies registered classes when objects are

added, moved or removed from the table. The same events

are generated for (finger tracking) cursor operations.

In general, application logic has to implement the

TuioListener interface, which defines various callback

methods such as addTuioObj(), updateTuioObj() and

removeTuioObj(). These methods are called by the

framework-supplied TuioClient class, which derives events

from the continuous stream of status information received

from the sensor application. The TuioClient class has to be

instantiated and started using the connect() method at the

beginning of the session. It is also necessary to register all

TuioListener classes that need to be notified by the

TuioClient using the addTuioListener() method. The

TuioClient operates in its own thread in the background

until it is terminated using the disconnect() method.

For environments such as PureData or Max/MSP, TUIO

client objects are provided that decode events from the

TUIO protocol stream and provide them to the environment

via appropriate messages.

EXAMPLE PROJECTS BASED ON REACTIVISION

reacTable

This table-based instrument has been the driving force for

the development of the reacTIVision framework, since the

reacTable's real-time music interaction and expressivity

demand very high performance and recognition robustness

from the sensor component. The physical artifacts on the

reacTable surface allow the construction of different audio

topologies in a kind of tangible modular synthesizer or

graspable flow-controlled programming language. Several

users can simultaneously manipulate various objects and

control additional features with finger gestures. The

reacTable web documents the various instrument features in

greater detail.
5

recipe-table

This project, which was shown during the Ars Electronica

Festival 2005, has been developed by a group of students

within the Interface Culture Group at the University of Art

and Industrial design in Linz. The recipe table is a fully

working prototype of a future kitchen environment, where

food and food products placed onto an interactive surface

5
 http://mtg.upf.edu/reactable/

are detected and the system suggests a series of possible

recipes that can be cooked with those ingredients. Changing

the ingredients position in relation to each other allows the

user to navigate within the possible recipes according to his

or her personal preferences. reacTIVision has been used to

identify and track the labeled products, simulating a

barcode tracking system. In the near future such an

environment could identify and track RFID labels that will

soon be incorporated into standard consumer products.

Further information about this intelligent environment and

its creators can be found on the project web page.
6

Blinks & Buttons

Blinks is a table-top interactive installation by the German

artist Sascha Pohflepp, where projected photos are

distributed on an interactive surface. Moving a glass prism

over a photo causes it to refract the light to the sides of the

table. This light contains projections of other photos taken

at exactly the same moment in other locations. The user can

browse the image collection over time. reacTIVision has

been used to track the prism controller in conjunction with

the Processing application. You can find more information

about this installation at the project’s web site.
7

FUTURE WORK

The reacTIVision framework is still being actively

developed and the existing code-base will be improved and

new features added. An important improvement in the next

release will be the inclusion of the plain finger tracking

layer, which doesn't require fiducial stickers on the

fingertips. We are also planning to include additional

fiducial engines such as ARToolkit, Barcodes and

Semacode decoding into reacTIVision. Video acquisition

under Linux needs to be extended to support a wider range

of cameras, eventually by incorporating the promising

unicap library
8
, which provides a uniform camera access

method for Linux operating systems.

ACKNOWLEDGMENTS

The authors would like to thank the Music Technology

Group at the Universitat Pompeu Fabra for supporting the

development of this publicly available software, as well as

the rest of the reacTable team, Sergi Jorda, Günter Geiger

and especially Marcos Alonso who support and contribute

to this framework in various ways. We would also like to

thank the numerous reacTIVision users for their

suggestions and encouragement. Last but not least we are

grateful for the initial support of Enrico Costanza by

making the development of this framework possible with

his earlier D-Touch contribution.

6
 http://www.recipetable.net/

7
 http://blinksandbuttons.net/

8
 http://unicap-imaging.org/

Fig. 3: examples a) reacTable b) recipe-table c) blinks

REFERENCES

1. Bencina, R. & Kaltenbrunner, M. “The Design and

Evolution of Fiducials for the reacTIVision System”,

Proceedings of the 3rd International Conference on

Generative Systems in the Electronic Arts (3rd Iteration

2005), Melbourne (Australia)

2. Bencina, R. & Kaltenbrunner, M. & Jordà, S.

“Improved Topological Fiducial Tracking in the

reacTIVision System”, Proceedings of the IEEE

International Workshop on Projector-Camera Systems

(Procams 2005), San Diego (USA)

3. Costanza, E. & Shelley, S. B. & Robinson, J. “D-

touch: A Consumer-Grade Tangible Interface Module and

Musical Applications”. Proceedings of Conference on

Human- Computer Interaction (HCI03), Bath (UK)

4. Han, J. Y. “Low-cost multi-touch sensing through

frustrated total internal reflection”, Proceedings of the

18th annual ACM symposium on User interface software

and technology 2005, Seattle (USA)

5. Jordà, S. & Kaltenbrunner, M. & Geiger, G. &

Bencina, R. “The reacTable*”, Proceedings of the

International Computer Music Conference (ICMC2005),

Barcelona (Spain)

6. Kaltenbrunner, M. & Bovermann, T. & Bencina,

R. & Costanza, E. “TUIO - A Protocol for Table Based

Tangible User Interfaces”, Proceedings of the 6th

International Workshop on Gesture in Human-Computer

Interaction and Simulation (GW 2005), Vannes (France)

7. Kato, H. & Billinghurst, M. & Poupyrev, I. &

Imamoto, K. & Tachibana, K. “Virtual Object

Manipulation on a Table-Top AR Environment”,

Proceedings of the International Symposium on

Augmented Reality (ISAR 2000), Munich (Germany)

8. MIDI Manufacturers Association,

http://www.midi.org/

9. Ullmer, B. & Ishii, H. “Emerging Frameworks for

Tangible User Interfaces”, In J. M. Carroll, editor,
Human-Computer Interaction in the New Millennium, pp.

579–601, 2001

10. Wright M. & Freed, A. & Momeni, A.

“OpenSound Control: State of the Art 2003”, Proceedings

of the 3rd Conference on New Interfaces for Musical

Expression (NIME03), Montreal (Canada)

